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ABSTRACT

We study the scattering of an incident wave by a flexible panel. The panel vibration
is governed by the nonlinear plate equations while the loading on the panel. which is the
pressure difference across the panel, depends on the reflected and transmitted waves. Two
models are used to calculate this structural-acoustic interaction problem. One solves the
three dimensional nonlinear Euler equations for the flow-field coupled with the plate eqiia-
tions (the fully coupled model). The second uses the linear wave equation for the acoustic
field and expresses the load as a double integral involving the panel oscillation (the decoupled
model). The panel oscillation governed by a system of integro-differential equations is solved
numerically and the acoustic field is then defined by an explicit formula. Numerical results
are obtained using the two models for linear and nonlinear panel vibrations. The predictions
given by these two models are in good agreement but the computational time needed for the

¥

“fully coupled model™ is 60 times longer than that for “the decoupled model™.
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1. Introduction

We consider the scattering of an incident acoustic wave by a planar interface, the (.,
z) plane. The interface is a rigid surface except on the flexible thin panel, D, with panel

thickness h much smaller than the size L of the panel, or the size of D,

h/L<1. (1.1)

This is a basic structural-acoustic interaction problem simulating the transmission of an
external acoustic source, say the engine noise, through the airframe into its mterior. It
is an interaction problem because the incident wave excites panel oscillation which
turn induces transmitted and diffracted waves. Meanwhile, these waves contribute to the
loading on the panel. Although in an engineering problem, the typical amplitude of the

transverse displacement, n*, has to be much smaller than the size of the panel, i. e.,

n*/LL1,. (1.2)

the problem can be nonlinear in three different aspects:

(1) The panel oscillation can be nonlinear when the transverse displacement of the panel

is not much smaller than the panel thickness h, that is

Q
=

7 (1.3)

Nonlinear plate equations are needed usually when the incident wave is in resonance

with the panel oscillation.

(2) In the near-field, of length scale L, the flow-field is linear and obeys the simple wave
equation but in the far-field, of length scale much larger than L. the flow-field may
become nonlinear when the second order terms are needed to account for the gradual

steepening of compression waves.

(3) In case the flow-tield is nonuniform and/or the initial pressure variation is no longer ~

much smaller than the ambient pressure then we have neilinear flow in the near-field.
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We have to solve the Euler equations with appropriate initial data to simulate an

incident wave and far-field conditions.

Regardless of whether the flow-field is linear or nonlinear, the plate should have sufficient
rigidity so that the transverse displacement of the plate remains small and hence the

governing equations for the plate derived under assumption (1.1) remain valid.

For the problem of sound transmission through a moving airframe, the external acous-
tic field is governed by the convective wave equation while that in the interior by the simple
wave equation. Also the pressure and density in the exterior can be much lower than those
in the interior. In the simple model simulating the experimental data with no-flow on both
sides of the panel, both acoustic fields are governed by the simple wave equation with the
same ambient pressure and density. The validity of the linear theory for the flow-field is
confirmed by the investigations of Frendi et al. [1,2] and Maestrello et al. [3]. They showed

that even when the panel vibration is nonlinear, the acoustic field can remain linear.

The pressure difference across the panel induces the panel oscillation which in turn
excites the transmitted wave and an additional reflected wave. Thus the solution of the
panel oscillation is coupled with the solutions of the scattered and transmitted waves which
satisfy the far-field radiation conditions for outgoing plane waves (see for example [4]). In
general numerical solution of the scattering of an incident wave by an elastic scatterer,
an interface, or a panel, requires the introduction of a finite computational domain for
both acoustic fields. Higher order radiation conditions were derived [5-6] so that they can
be imposed on the boundary of the finite computational domain to give more accurate
approximation to the solution in the unbounded domain. Since the size of the computa-
tional domain has to be much larger than the size of the panel or a scatterer, numerical
solution of this three-dimensional unsteady problem is very tedious especially when the
compntation nas o he continued for a long time relative to the period of oscillation of the
panel. Furthermore, the accuracy of the solution depends not only on that of the numeri-
cal solution of the differential equations but also on the approximate boundary conditions.
Refinements of the grid size and time sten hiave to oo with an enlareement o the compina-

tional domain. It is desirable to find ezact boundary conditions so that the computational

2




domain does not have to be much larger than the scatterer and is independent of the choice
of grid size. The ezact conditions were presented in [7] for a scatterer or inhomogeneons
medium of bounded support. With the scatterer inside the computational domain, the
integral representation of the solution of the simple wave equation is applicable to the

region outside and on the boundary of the computational domain.

Here the scatterer is a panel embedded in a rigid plane. The integral representation
can be applied on the panel and the integrand involves only the normal velocity of the
panel [8, 9]. Thus we have a system of integro-differential equations for the panel oscillation

decoupled from the acoustic field. This system is referred to as the decoupled model.

For the case that the acoustic wave length is much smaller than L, the integral repre-
sentation can be approximated by the local derivatives of the panel oscillation and hence
the integro-differential equations are reduced to partial differential equations [8, 9]. This
approximation is not applicable here because in the experimental data, the acoustic wave
length is comparable to L. We need numerical solution of the integro-differential equations
for the panel oscillation and then we can use the integral representation to evaluate the
acoustic field and the nonlinear waves in the far field by Whitham’s theory or matched

asymptotics.

Note that the solution of the decoupled panel oscillation is an unsteady two dimen-
sional problem in the finite domain D and is several orders of magnitude simpler than the
solution of the fully coupled problem. To show the efficiency of the decoupled model and
the accuracy of the solution even when the panel oscillation is nonlinear, we compare the
solution of this decoupled system with the solution of the fully coupled problem for which
we solve the three-dimensional nonlinear Euler equations for the flow-field coupled with

the nonlinear equations for the panel oscillations.

In the next section we present the mathematical formulations of these two models and
diseuss their appi.. ations in general. Section 3 deseribes the various munerical techniques
wsed to soive the probleme involved. The resuits and disenssion are given i section 4, and

the conclusions are in section 5.
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2. Formulation of the Two Models

The physical problem being studied experimentally is that of the nonlinear oscillations
of a typical aircraft panel excited by harmonie plane waves at normal incidence. The panel
is clamped onto a large rigid plate. Let the typical panel be represented by a rectangular
domain D in the (z,z) plane, with length L, width W and one vertex located at (¢, zq),
i e.,

D ={(x,2) |zo<z<zo+L, z0<z<2+W}. (2.1)

The compliment of D in the (r,z) plane represents the rigid plate. The incident side is
the half space y > 0 and the transmitted side is the half space y < 0. Both sides have
the same ambient pressure po, and temperature To, and hence the same speed of sound C
and density po. We denote the pressure and velocity potential of the flow-field by p and
¢ and use the superscripts + and — to denote the quantities on the sides y > 0 and y < 0.
On the side y > 0, the superscripts 2 and r are used to denote the quantities associated
with the incident and reflected waves, respectively. These two waves are mirror images
with respect to the (r, z) plane. When the incident waves are plane waves advancing in

the direction opposite to the y axis and hitting the (z, 2) plane at t = 0, we have

d)‘i)(t,.r,y,z) = f(Ct+y) and é(')(t,x,y,:) = f(Ct —-y), (2.

1§V
(8]

with f(€) =0 for £ < 0. Therefore ¢{™ =0 when 0 > y < Ct.

Transverse oscillation, 7, of the rectangular flexible panel, D, is excited by the pressure
difference across the panel for t > 0 and the oscillation in turn induces scattered waves ¢°
in the incident side and transmitted waves ¢'. Both waves have the homogeneous initial

data at t = 0,

p =gV =0, y>o0,
(2.3)
sV =9 =0, y<o0.

Under linear theory, we have
¢'7(t r,y,2) = ¢t 0, -y, 2)
d VNt o, —y.z) = =Nt ryz) for y>0.
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The wave fronts of #(*) and ¢(¥) are the envelopes of the sonic spheres with radius Ct and
centered on the panel in y > 0 and y < 0, respectively. The pressure in the incident and

transmitted sides are

t (2.5)
P~ —Poo =p\¥, y<O0
and the pressure difference across the panel is
Ap=p~ —pt=2p0 —pD +pM],  y=0, (s,2)€D. (2.6)

In this section we formulate two mathematical models to compare with and compli-
ment the experimental studies. We present the system of equations governing the nonlinear
flow-field and panel oscillation (the fully coupled model) in Section 2.1 and formulate the
system of integro-differential equations for nonlinear panel oscillation including the effect

of a linear acoustic field (the decoupled model) in Section 2.2.

2.1 The Fully Coupled Model

" In this model the structural-acoustic interaction is analyzed by solving the three-
dimensional nonlinear Euler equations together with the nonlinear plate equations. The
configuration of the computational domain is shown in Fig. 1. In cartesian coordinates, «,
y and z, the compressible, nonlinear Euler equations can be written in conservation form

as

Q=F.+Gy+ H., (2.7).

where Q is the vector (p, pu, pv, pw, e), p is the density, pu, pv and pw are the x, y and

z momenta respectively, and e is the total energy per unit volume given by

1 .
e= -2-,o(u2 + v + w?) + pe, T, (2.8)

with ¢, being the specific heat at constant volume. In eq. (2.7), the functions F, G and
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H are:

/)U
pu2 +p
F = puv ,
pua
u(e +p)
/)'U
pun
G=| pvt+p (2.9)
puoe '
(e +p)
and
mao
pue
= pme
pw2 +p
(e 4 p)

In addition to eq. (2.7), the equation of state of an ideal gas is used:

p=,RT. (2.10)

where pis the pressure, R the gas constant, and 7' the temperature. Sinee we assume that
the ineident wave hits the panel at ¢ = 0. the low on the transmitted side, y < 0, is at

rest for + < 0. The initial data at £ =0 for y < 0 ar-

u=v=w=0, p=px and p=p . (2.11)
On the rigid plate we have zero normal veloeity,
o(r,0,2) =0 for (r,2)¢D. (2.12)

The motion of the flexible panel, D, 1s deseribed by a system of three, nonlinear partial

differential equations given by [10};

DV + pplige + vy = Ap
Eh

1 — ¢

1 .
[(“'(,'- + :;”j)("]r.r + V’/::)

1.
F O 4 Sy )

—

(T = ) 0l 4 )] (2.13)
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ug, + d, ug: + deB, = =0e(Mzz + d1nz2) — danan)zs

W, + dywl, + dyu®, = —0.(n2 + dizz) — dafai)z:

where
v471 = Nrrer + 2rrzz + Nazze (214)
1—v 1+ v Eh3 .
dy = 5 dy = 5 D—m, (2.15)

« and 1w0? are the in-plane displacements, and 7 is the transverse displacement. The

physical constants for the panel appearing in (2.13) are; the stiffness (D), the density (p,),
the thickness (h), the physical damping (v), the modulus of elasticity (E) and the Poisson
ratio (7). The system of equations (2.13) is solved subje;:t to the homogeneous initial
condition

at t=0 W=w=g=y=0 (2.16)
and the clamped boundary conditions on C given by

0
xr=urg, rg+L, w=w =p=19,=0,

(2.17)

e
|

=z, 20+ W, W=uw=yp=9.=0.

In eq. (2.13), the load Ap defined by (2.6) contains the coupling with the acoustic field p'
and the foreing term (p(? + p{™) which represents the load on the panel if the panel were

rigid, We assume the foreing term to be a harmonic wave of the form
P+ pl) =€ sin(wt) H(t) on y=0". (2.18)

where ¢ and w are the amplitude and frequeney of the wave and H denotes the Heaviside

unit step funetion. The load on the panel D given by (2.6) becomes
Ap = [2p' — € sin(wt)] H(t) . (2.19)

Another condition coupling the flow-fields and the panel oseillation is the kinematie con-

ditions,

m(tye,z) = vE(t, 0, 0%, 2) (r.z) € D. (2.20)
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They are imposed on y = 0% becanse of the small panel displacement, (1.1). The numerical
scheme for the solution of the nonlinear plate equation (2.13) and the Euler equations (2.7)

for the transmitted waves with homogencous mitial data will be deseribed 1 Ser. 3.
2.2 The Decoupled Model

Now we analyse the nonlinear panel oscillation exeited by a wesk incident pressure
wave, ptY under the assumption that the pressure fluctuation remainus much smaller thau
the ambient pressure p.. 1. e..

(P —P=x)/Px < 1. (2.21)

Consequently, the small disturbance theory is applicable to the flow fields m the incident
and transmitted sides and the panel/acoustic interaction problem is deseribed by (2.1)

(2.6). The velocity poteniial @ (¢, 0.y, 2) is governed by the simple wave equation.
(C20, =0, =02, 02 )@t =0, for +y>0, (2.22)

+

and the acoustic pressure and velocity v are related to the potential by

pE = —p0,0F and vi = Vet (

[V

23)

In particular, we have v = J,® where » denotes the vertical veloeity. The vertieel dis-
placement of the panel, y(t. r, z). 1s governed by the system  f partial differential equations
(2.13). To produce the special forcing term. (pt*) 4+ p{™) acting on the panel specified by
(2.18) in Sec. 2.1, the inecident potential should be

Y

£ 2.9
JH(t + o) (2.24)

€
o try, z) = — cosfwlt +

Y
2pcwC C

Note that the incident wave ¢V is a solution of (2.22) in the whole space. When the panel

is rigid, the incident wave is reflected by the rigid (r, z) plane and the reflected wave 1s,

[
b
[

oty 2y =06t e —y.z) for y>0. (
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On the side y < 0. the How-field remains at rest because there is no transmitted wave,

For a flexible panel, the panel oscillation excited by the pressure difference across the
panel =2pD (¢ r. 0%, 2) induces a scattered wave o' on the incident side and a transmitted

wave o', Thus we write

® =0 40" 40, y>0 (2.260)
and
¢ =o't . y<0. (2.260)

Note that ¢(*) and 99 are governed by the simple wave equation (2.22)iny > 0 and y < 0

respectively, The kinematic conditions on the (r, z) plane. (2.20) and (2.23). become

o
©
~1

0y (t.r,07.2) = On(t.xr,z) and 0y0'(t.0.07.2) = Opylt.r.z) . (

where 7 denotes the extension of the transverse displacement of the panel. D, to the (r,
z) plane. 1. e..

n=20, (r.z) ¢ D. {

N
o
o0

If the meident wave front hits the panel at ¢+ = 0. we can impose the homogeneous initial

conditions on ¢, ¢! and 1,

M =0,00" =0, o =0, 06" =0 and yp=0.09y=0 for t<0.
(2.29)

Iy

ince the ambient fluid above and below the panel are the sqane. (2.27) 1implies that the
S tl bient fluid al 1 below the | 1 tl 2.27) implies that tl

velocity potential induced by the panel oscillation has to be anti-symmetric i y. 1. e,

oW(try,z) = -0 (toei—y.2) . y<0. (2.30)

Then the pressure difference across can be written as

Ap = 2p 000 (1,007 2) + 0o (1.0 0% 2)] . (r.z) €D. (2.31)
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The derivation of the system of equations, (2,21 10 (2.31). completes the formmlarion of
e strietnral facoustic interaction problem usiug linear theory for the acoustic fields. The
panel oseillation. which can be nonlinear is governed Ly the system of equations. 1 2.13) -
(2170,

The velocity potential o induced by the pand oseillation 1 is governed by the wave

cauation (2,22, the initial conditions (2.29) and the boundary condition (2.27). The
| A

<olution i given by the Kirehhoff formula.

i {ndtor' 2N}
sy . oy - 1 YALEREE gy D)
oV(triy > 0.2) = oy //( - dr'd:" . (2.32)
where R = [(r — o'y + y% + (2 — =) denotes the distance from a point (woy > 0027 1o

a source at (1.0.2) and {-} derotes the retarded value of. 1 e

R
{net ' 002" = mplt — E..:-’.0.:’) : (2.33)

The domain of dependence of o1, 0.y, 20 s the cirenlar dise H in the (002" plane. 1
1 7]

’

H | R<Ct or = (a —r)P 4 -l et — 7. (2.34)

The domain of integration in (2.32) is the iutersection of H and the panel. 1. e

Now e introduce the polar coordinates, r 6 . centered at (ro2). 1. e

e e =reosd and -z =rsinf 12.36)
ane (2.32) becomes,
Ay 0y = = [ Bt ] " (2.37)
! o Uy T C R
with
gt r By = pltor 4 reosf oo 4 rsinf) . (2.38)
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Here R = (r? + y2)'/? represents the slant height of a circular cone with vertex P(z,y, ),
a vertical axis and a base circle of radius » in the (z, 2) plane. On account of (2.28), we
can extend the domain of integration to H and rewrite (2.37) as an iterated integral,
. Co 1 [ 2 | R r dr
¢ (t, e,y >0,2) = —— [ / dé g,(t — e 6) ] = (2.39)
0 .

27 Jo

The integral in 6 represents the contribution of the sources on a base circle of radius r.
In (2.31), we need to relate the unknown, ¢v$’)(w,0+,z) on the panel to n(t,x,y) for

(x,z) € D. This is obtained by differentiating the above equation with respect to ¢ and

using (2.28). This results in replacing #(*) on the left-hand-side of (2.39) and g, in the

integrand by ¢$") and gy, respectively.

As y — 07, R — » and the circular disc H is bounded by the sonic circle r = Ct.

Equation (2.39) yields
(s) + 1 2n 't r
¢y (t,x,07,2) = —EEA /0 gu(t — 6,1',0) dr do . (2.40)

Note that in this form we remove the kernel 1/R in (2.32), which becomes singular as y — 0
and r — 0 and shows that the area of the domain of integration is bounded above by 27 C'*.
By using (2.31) and (2.40), (2.13) becomes a system of integro-differrential equations for
the panel osciilation, . The initial and boundary conditions for 5 are (2.16) and (2.17).

- Thus we complete the formulation of the decoupled model. Tie numerical solution of this -

system will be described in Sec. 3.

2.3 Application to Noise Transmission in a Supersonic Flight at High Altitude

The analysis reported in Sec. 2.2 is based on two assumptions

(1) The flow-fields above and below the panel have the same an:bient condition, i. e.,

Pt = pzr P = P and v = 0.
| (ii) The panel is planar and not prestressed, i. e., under zero tension.

11



The analysis can be employed to estimate the noise transmitted into the fuselage flying
at low speed and a relatively low leveld, where the static pressure remains nearly equal to
one atmosphere. Assumption (1) is valid when terms of the order of the flight Mach number
M are omitted. Assumption (ii) is valid since the size of the panel L is much smaller than
the radius of the fuselage, Ry. There is no hoop stress when pt = p>. under assumption
(1). In practice, there is a pressure difference (p, — pt ). even for a low Mach number

flight.

For an airplane cruising at subsonic or supersonic speed, it is necessary to account for
the differences in densities and in pressures inside and outside the fuselage and the moving
media outside and to include the contribution of the hoop stress to the panel oscillation.
The formulation of the decoupled models for structural acoustic interactions in a moving
media at subsonic and supersonic speeds is carried out using the linear theory for the flow-
field. The system of integro-differential equations for the panel oscillation is then reduced
to a system of differential equations when the acoustic wave length i1s much smaller than

the surface wave length [11].

In this subsection, we show that with minor modifications the above analysis becomes
applicable to a supersonic airplane cruising at high altitude. We make use of the fact that
the cabin pressure, pZ_, and temperature and hence the density are maintained near the
ambient level while the outside pressure p}, and density p}, at the flight altitude H are
much lower. The density ratio, p% /p is about 1/10 or 1/20 when H = 60,000 or 80,000
ft. The came is trve for the pressure ratio while the absolute temperature ratio and hence

the ratio of the speed of sound remains O(1), i. e.,
— ot + o~ , N T
H=pL/pe <1, pr/py =0(n) and CT7/C™ =0(1). (2.41)

Thus, the density ratio u serves as a small parameter in the following modification of the

analysis in Sec. 2.2.

On the transmitted side, y < 0, the governing equations. (2.13) (2.23). (2.26h), (2.27)
and (2.29). remain valid when the superseript =" is added to p.. and C. On the mcident

side, y > 0. equations (2.25), (2.26a). and (2.29) remain the same while (2.22), (2.23)

12




and (2.27) have to be modified to include the convection terms. Consequently, (2.30) and
(2.31) will be modified. In particular, we note the acoustic pressure relationship (2.23) in

the transmitted side,
pT—pn=p" = -p200" . y<0 (2.42)
and that on the incident side,
pt—pt = p 4+ p(» +p) = —pp o0+ MC*0,)®, y>0. (2.43)
Using (2.26a) and (2.43), we have
P = —pupZ [0 + MC*0, )" y>0, (2.44)
Likewise, the kinematic condition on the y = 0% is modified and (2.27) becomes,

9,0 (.2, 0% . 2) = [0+ MC*3,n(t,r,z) and 0y (., r,07.2) = d(t,x,z) . (2.45)

With the convection term at most of the order of the unsteady term, or one order smaller

under the short acoustic wave approximation, we deduce from (2.45)

ay¢(t)(ta$50-az) = 0(ay¢(3)(t»f'q+*:)) (246)
and then from (2.44)
Pt x,0%,2) = O(p p!O(t.r,07.2)) . (2.47)

By using (2.41) and (2.44), the load on the panel, which is the pressure difference, becomes

Ap = (ps — pL) + =20 + ('Y — p!")H(t)

. (2.48)
= poll = O(u)) + [-2p™ + ™ (1 + O(W)H(2) .

The constant load (p, — p}) = pg, is present for all t. The unsteady load due to the

acoustic waves is present only for ¢ > 0 and is much smaller then p2 . The constant load

13




produces a static deflection ny(r. 2) which does not generate far-field sound. The nnsteady
load excites panel oscillation 7)'(¢, r, z) and generates the far-field sound. Therefore. we
separate the static panel deflection from the unsteady oseillation.

n=nole.z)+ ' (tor.z) . {2.149)

Note that the panel oscillation, 17, 1s coupled with only the acoustic field (2.48) in the
trausmitted side, since p(?) is preseribed and p®) is O(p) related to pt®. This is equivalenr
to say that m a high altitude flight the acoustic damping in the flow-field outside of the
fuselage 1s of the order of the density ratio g = p /p7 relative to that inside and hence

is neglegible.

Since the fluid is at rest inside the fuselage. the transmitted wave obeys the simple
wave equation (2.22). We can make use of the analysis in Sec. 2.2, in particular. (2.30)

and (2.40), to relate the on surface transmitted pressure to the panel oscillation.
p—- 2r (@' .
ptr 07, 2) = —p 00! = —9—*/ / geelt — F.r.e) dr df . (2.50)

Thus we have a closed system for the panel oscillation, 7', from which we can then compute

the transmitted and scattered acoustic fields.
3. Numerical Methods

For the fully coupled model, the nonlinear Euler equations, (2.7). are solved using an
explicit finite difference scheme. The scheme, which ix a generalization of MacCormack’s
scheme obtained by Gottlieb and Turkel [12]. is fourth-order accurate in space and second-
order accurate in time. Further details on the implementation of the scheme can be found
in Frendi et al. [1,2]. The physical hboundary of the computational domain (the hottom
boundary, see Fig. 1) is composed of a Hlexible panel clamped between rigid plates. Over
the rigid plates, the vertical velocity is zero (0 = 0) and the surface temperature 1s T,,.,
which in this paper is the same as the fluid temperature, T.. The r and = conmponents

of the veloeity (v and w, respectively) are obtained through lincar extrapolation from the
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interior of the computational domain. The pressure boundary condition is obtained using
the normal momentum equation by simply imposing the normal gradient of the sum of
pressure and vertical momentum flux to be zero, 1. e., Jy(p + pr?) = 0. Over the flexible
panel, the vertical velocity is set to be equal to that of the panel and the temperature is
T. The r and = velocity components and the pressure are extrapolated from the interor
of the computational domain. The appropriate boundary conditions on the computational
domain are derived using the method of characteristics [13]. One should mention that
the characteristic boundary conditions and the extrapolation are only first order aceurate.
while the interior scheme is fourth order. These boundaries are believed to be a source for
numerical error in the fully coupled model. The dimensions of the computational domain
are, 61 em, 3.05 m and 40.64 cm in the r, y and = directions, respectively. The number of

computational points used are, 121, 241, and 81 in the respective directions.

The nonlinear plate equations, (2.13), are solved using a finite element method devel-
oped by Robinson [14]. The panel is 30.5 cm long, 20.32 em wide and 0.102 em thick. and

the number of elements used are 6 and 8 respectively.

Since the grid used for solving the plate equations is rectangular. it is easlier to
evaluate the integral in (2.40) in cartesian coordinates. In this case there 1s a singularity
at each computational point corresponding to » = 0. In order to overcome this difficulty.
a Taylor series expansion up to the second order is used to calculate the contribution of
the singular point. The contribution of the various points on the panel that lie within
the sonie circle (R < Ct) is calculated by first integrating in & using a combination of
Simpson and trapezoidal rules. The result is then integrated in z using Simpson’s rule
of integration. Because of the presence of the retarded time in the integral, the vertical
velocity of the plate (7,) is stored at each point for several time-steps. The evaluation
of the double integral can use a much larger time step than the At for the integration of
the differential equations, yet having the same degree of accuracy. For a plate of given
dimensions (L, W), and for a fixed time-step At, the maximum number of time-steps to
be stored is N = VL2 + W?2/(CAt). The nuuber N has to he changed when calenlating

the radiated pressure away from the plate. The number NV is related to the radius of the




largest sonic circle in the domain that contains the flexible panel. For the cases presented

in the next section N = 1503 for a time-step At = 4x107° sec.
4. Results and Discussion

The numerical schemes for the two models presented in Sec. 3 are used to predict the
vibration of a flexible panel and the resulting acoustic radiation. The panel is forced to
vibrate by harmonic plane acoustic waves at normal incidence. The frequency of the source
is 751 Hz, which corresponds to a natural frequency of the panel. Two different amplitudes
of the incident waves are used. The properties of the panel, which are considered to be
uniform, are: density p, = 4450.15 Kg/m?, modulus of elasticity E = 1.10316x10'' N/m?,
Poisson ratio v = 0.33 and a damping ratio of 0.01. The acoustic fluid properties are:
temperature To, = 288.33 °K, density po = 1.23 Kg/m?, pressure po = 1.013x10° N/m?
and sound speed co, = 340 m/sec. The specific heat at constant volume is ¢, = 1.004
KJ/(Kg °K), the ratio of specific heats is ¥ = ¢p/c, = 1.4. In the-far field, the fluid is at
rest. The variables plotted on figures 2-5 are nondimensional. The reference quantities are

given by

lref c?
Y, 2, )ref = lref, tref = , 1 Tref = —
( Yy ]) ef ref ef C anc ef Cy
an 2
Pref = Poos (u,v,w, Bt—)ref = C, and (Py€)ref = PcC”. (4.1)

where the reference length is I,y = 0.3048 m.

Figure 1 shows the configuration of the computational domain, a rectangular box
with the lower side composed of a flexible panel clamped between rigid plates. For a low
excitation amplitude, 100 dB or 5 x 10™* atm., Fig. 2 shows that the panel response is
linear. In this case, both models predict the same panel response as shown by the figure.
This result is expected since the incident wave is extremely weak. Figure 3a-b show the
time histories of the radiated near- and far-field pressures, 2.54 cm and 1.524 m, or L/12
and 5L, away from the panel center respectively. The radiated pressure predicted by the
linear theory (2.32) is in excellent agreement with that predicted by the Euler equations

(2.7).
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When the level of the excitation is increased to 160 dB, or 0.01 atm., the response
of the panel becomes nonlinear as shown by Fig. 4. The time history of the panel center
displacement shows a non-periodic behaviour characteristic of nonlinear response. The
figure also shows that even when the panel oscillation is nonlinear, the predictions of the
two models are in reasonably good agreement, because the pressure variation is still much
smaller than p., = 1 atm. The radiated near- and far-field pressure time histories are
shown on Fig. 5a-b. In the near-field, L/12, the predictions of the two models are in
reasonably good agreement and the maximum pressure variation is of the order of 0.02
atm. In the far-field, 5L, as shown in Fig. 5b, the maximum pressure variation is of the
order of 107* atm. and is reduced by a factor of 100 from that in the near-field. In Fig.
5b, the difference between the “decoupled model” and the “fully coupled model” can be
obseved. But this difference is of the order of 1073 times the pressure variation in the

near-field and is within the accuracy of the numerical solution.

From a computational view point, it is important to compare the performance of the
two models based on the CPU time required by each calculation. In the linear vibration
regime, the “fully coupled model” used 36000 seconds of CPU time on a Cray-ymp to
advance the calculation by 10000 time-steps, whereas the “decoupled model” used only
1000 seconds for the same calculation. In the nonlinear vibration regime, grid refinements
were needed to resolve the large gradients both on the panel and in the radiation field.
Therefore, in order to advance the calculation by 10000 time-steps, 72000 seconds were

used by the “fully coupled model” while the “decoupled model” used only 1200 seconds.

5. Conclusions

An efficient model for coupling the vibration of a panel to the on surface acoustic radi-
ation was derived. The model uncouples the panel vibrations from the acoustic wave prop-
agation problem. The results showed that this model, referred to as “decoupled model”,
accurately predicts the panel response and acoustic radiation in the linear and nonlinear
vibration regimes so long as the pressure variation in the flow-field remains much smaller

than the ambient pressure. For the cases studied in this paper, the computational cost of
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the numerical integration of this model is 36 times cheaper in the linear regime and 60

times cheaper in the nonlinear regime than the cost of the “fully coupled model™.
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Figure 1: Computational Domain
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